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Abstract
The Schrödinger equation for two-dimensional D− centres is directly solved
by expanding the wavefunction in terms of hyperspherical harmonics and
generalized Laguerre polynomials. An exponential correlation function is
introduced to accelerate the speed of convergence. The inclusion of 144
hyperspherical harmonics and 21 generalized Laguerre polynomials yields the
ground-state energy −2.240 2399 au, which is converged to an error in the sixth
significant figure.

A two-dimensional D− centre consists of a fixed positive ion and two electrons, all confined to
the x–y plane. Since its first experimental identification in selectively doped GaAs–GaAlAs
multiple-quantum-well structures in 1990 [1], there have been many calculations of the ground-
state energy [2–6]. In the presence of a strong perpendicular magnetic field or in a quantum
dot, a two-dimensional D− centre is confined by a parabolic potential in the x–y plane, and the
wavefunctions decay as exp(−ρ2), where ρ is a size parameter. Exact eigenenergies can be
obtained by diagonalizing the Hamiltonian with oscillator harmonics as basis functions [2, 6].
Without the magnetic field or the static electric field which defines a quantum dot, the system
is governed by the long-range Coulomb interaction. The wavefunctions decay as exp(−ρ).
More sophisticated methods are then required to obtain accurate eigenenergies. Already,
there have been a number of variational or diffusion quantum Monte Carlo calculations of
the ground-state energies based on trial wavefunctions with several variational parameters [3].
In this paper, we directly solve the problem by expanding the trial eigenfunctions in terms
of the hyperspherical harmonics and generalized Laguerre polynomials. Obviously, when
the wavefunction is expanded in a complete set of basis functions, it is guaranteed that the
eigenfunctions and the eigenenergies converge to the correct ones. Calculations based on an
incomplete set do not offer this advantage. Hence, the present work represents the first well
founded solution of the problem.
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The solution of the Coulomb few-body problems with hyperspherical harmonics has a
long tradition [7–12]. However, it is also very well known that the direct expansion of the
wavefunction in a series of hyperspherical harmonics converges very slowly [10]. This results
from the fact that the particles tends to form subclusters in the system. The imitation of this
feature requires many hyperspherical harmonics. In this paper, we accelerate the convergence
by introducing a Jastrow-type correlation factor, and exact ground-state energies have been
obtained.

For two electrons moving in the Coulomb field of a donor ion in an ideal two-dimensional
quantum well, the Schrödinger equation in effective atomic units (au) is

H�(r1, r2) = E�(r1, r2) (1)

with

H = −1
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where ri is the position vector of the ith particle from the donor ion in the x–y plane.
To deal with the singularity of the attractive Coulomb interactions in equation (1), which is

responsible for the formation of subcluster structures in the system, we write the wavefunction
as a product of two parts:

�(r1, r2) = � ′(r1, r2)χ (3)

with

χ = exp[−a(r1 + r2)] (4)

where a is a free parameter. The eigenequation for determining � ′ is given by
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where
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The introduction of hyperspherical coordinates takes advantage of the homogeneity of the
Coulomb interactions. Let (xi, yi) be the cartesian coordinates of the ith electron; the two
equivalent sets of hyperspherical coordinates that can be assigned to the system are defined as

(x1, y1) = (R cosφα cosϕα1 , R cosφα sin ϕα1 )

(x2, y2) = (R sin φα cosϕα2 , R sin φα sin ϕα2 )
(7)

and

(xrel, yrel) = (x2 − x1, y2 − y1) = (
√
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2
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2

)
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(8)

where

0 � R < ∞ 0 � φj � π

2
0 � ϕ

j

1 , ϕ
j

2 � 2π j = α, β

and where (xrel, yrel) denote the relative coordinates and (xcm, ycm) denote the centre-of-mass
coordinates of the two electrons.

With hyperspherical coordinates, the Hamiltonian H ′ can be rewritten as

H ′ = −1
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where

U(1)(�) = cosφα + sin φα (10)

U(2)(�) = (cosφα − sin φα)
∂

∂φα
+

1

2

(
1
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+

1

sin φα

)
(11)

U(3)(�) = − 1

cosφα
− 1

sin φα
+

1√
2 cosφβ

. (12)

Here � stands for a set of collective hyperspherical angles {φj , ϕ
j

1 , ϕ
j

2 }. �2(�) is the grand
orbital operator, the eigenfunctions of which are called a set of four-dimensional hyperspherical
harmonics Y{νl1l2}(�), given by

Y{νl1l2}(�) = "l1l2
ν P l1l2

ν (φj )eil1ϕ
j

1 eil2ϕ
j

2 (13)

where "l1l2
ν is a normalization constant, and P l1l2

ν is a Jacobi polynomial.
We expand the trial wavefunction� ′ in terms of hyperspherical harmonics in the following

manner:

� ′(R,�) =
∑
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F{νl1l2}(R)Y{νl1l2}(�). (14)

Then equation (5) is transformed into a set of coupled differential equations:{
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where λ = 2ν + |l1| + |l2|, and
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which can be evaluated analytically [13].
In matrix notation, equation (15) can be more succinctly written as{
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where Γ̄ is a diagonal matrix with elements λ(λ + 2)δ{νl1l2},{ν ′l′1l
′
2}, Ū(i) is a square matrix with

elements U(i)

{νl1l2},{ν ′l′1l
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2}, F̄ (R) is a one-column matrix with elements [F{ν ′l′1l
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We expand the hyperradial wavefunction F̄ (R) according to

F̄ (R) =
∑
n

C̄nL
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n (ρ) (18)

where C̄n are one-column matrices of the expansion coefficients and ρ = 2aR. L(γ )
n (ρ) are

the generalized Laguerre polynomials, which form a complete set and obey the following
relations:
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Substituting equation (18) into equation (17), and considering equation (19), we arrive at
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where ε = (a2 + E)/(2a2). With the help of equation (21), we have
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By repeatedly using equation (20) in equation (23), the power of ρ can be reduced to zero.
Then, setting the coefficients of eachL(2)

n (ρ) to zero, we obtain a set of linear and homogeneous
equations for determining the column-matrix coefficients C̄n:
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the secular equation of which determines the eigenenergies.
In our numerical calculations, in view of some physical considerations, two values of

a-parameter in equation (4) have been tried:

(i) With a = √|E| in equation (4), the correlation factorχ correctly represents the asymptotic
behaviour of the full function � as r1, r2 → ∞, or the interaction term 1/r12 tends to
vanish. The calculated ground-state energies with some selected numbers of bases are
presented in table 1. The numbers of generalized Laguerre polynomials used are 3, 4,
5, 6, 7, 8, while the numbers of hyperspherical harmonics used are 4, 16, 36, 64, 100,
corresponding to the maximum λ-values 4, 12, 20, 28, 36 respectively. For comparison,
also included in table 1 are the ground-state energies calculated with the same numbers
of bases but with a different χ -factor [14]:

χ = exp{−γ (r2
1 + r2

2 )
1/2} γ 2 = 2|E| (25)

which is invariant under the transformation of coordinates (note that (r2
1 + r2

2 )
1/2 = R is

the hyperradius in hyperspherical coordinates).
It is clear in table 1 that with χ = exp[−√|E|(r1 + r2)], the ground-state energies

converge faster in the expansion of hyperspherical harmonics but slightly slower in the
expansion of Laguerre polynomials than with equation (25).

(ii) With a = 2 in equation (4), χ represents the ground state of a system without the electron–
electron interaction. The Coulomb terms (1/r1 + 1/r2) in equation (6) are completely
cancelled. The calculated ground-state energies are presented in table 2, where the
numbers of the generalized Laguerre polynomials used are significantly bigger than in
table 1. It can be seen that the convergence in the expansion of hyperspherical harmonics
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Table 1. Ground-state (1S1) energies of a two-dimensional D− centre. NGLP is the number of
generalized Laguerre polynomials, NHH is the number of hyperspherical harmonics, and λm is the
corresponding maximum λ-value. The first line in each entry gives the results calculated with the
correlation factor χ = exp[−√|E|(r1 + r2)], while the second line in each entry gives the results
calculated with χ = exp[−√|E|(r2

1 + r2
2 )

1/2].

NGLP

NHH (λm) 3 4 5 6 7 8

4(4) −2.1222555 −2.1214801 −2.1212673 −2.1212001 −2.1211757 −2.1211657

−1.9906250 −1.9905223 −1.9904967 −1.9904886 −1.9904856 −1.9904843

16(12) −2.1979780 −2.1971270 −2.1969432 −2.1968854 −2.1968645 −2.1968560

−2.1490957 −2.1491899 −2.1491722 −2.1491661 −2.1491638 −2.1491629

36(20) −2.2193228 −2.2183587 −2.2181942 −2.2181401 −2.2181205 −2.2181126

−2.1920478 −2.1930192 −2.1930653 −2.1930620 −2.1930600 −2.1930591

64(28) −2.2281474 −2.2271354 −2.2269843 −2.2269315 −2.2269126 −2.2269050

−2.2093718 −2.2112460 −2.2114402 −2.2114511 −2.2114500 −2.2114493

100(36) −2.2326000 −2.2315791 −2.2314386 −2.2313865 −2.2313679 −2.2313604

−2.2179318 −2.2204752 −2.2208324 −2.2208698 −2.2208716 −2.2208711

Table 2. Ground-state(1S1) energies of a two-dimensional D− centre calculated with the correlation
factorχ = exp[−2(r1+r2)]. The last line gives the expectation values of the total Coulomb potential
V divided by 2.

NGLP

NHH (λm) 16 17 18 19 20 21

4(4) −2.2564182 −2.2564196 −2.2564191 −2.2564193 −2.2564192 −2.2564192

16(12) −2.2416867 −2.2417024 −2.2416951 −2.2416985 −2.2416969 −2.2416976

36(20) −2.2404820 −2.2404984 −2.2404907 −2.2404943 −2.2404926 −2.2404934

64(28) −2.2402793 −2.2402956 −2.2402879 −2.2402915 −2.2402898 −2.2402906

100(36) −2.2402365 −2.2402528 −2.2402451 −2.2402488 −2.2402470 −2.2402479

144(44) −2.2402286 −2.2402449 −2.2402372 −2.2402408 −2.2402391 −2.2402399

〈V 〉/2 −2.2402312 −2.2402451 −2.2402401 −2.2402496 −2.2402408 −2.2402409

is further improved but the convergence in the expansion of Laguerre polynomials shows
significant further deterioration.

Presented in the last line of table 2 are the expectation values of the total Coulomb
interaction energy in the ground state divided by 2, which should be equal to the expectation
values of the full Hamiltonian with a true eigenfunction, according to the virial theorem:

2〈T̂ 〉 = −〈V 〉 (26)

for a system governed by (1/r)-type interactions, where T̂ is the kinetic energy operator.
However, when an approximate eigenfunction is used, the virial theorem does not
hold automatically. Therefore, besides the convergence pattern, the difference between
the eigenenergies obtained from solving the secular equation of equation (24) and the
eigenenergies derived from the virial theorem can serve as an independent check of the
accuracy of the calculated results (note that the direct evaluation of 〈H 〉 is computationally
very tedious). From table 2, we see that the ground-state energies derived from the
two methods are in agreement up to the fifth significant figure when 144 hyperspherical
harmonics and 21 Laguerre polynomials are used.
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Table 3 presents the eigenenergies of the first excited state (denoted by 1S2). For this
state, the inclusion of 38 generalized Laguerre polynomials and 64 hyperspherical harmonics
produces an eigenenergy of −1.997 3418 au, which is converged to an error in the fourth
significant figure. It is interesting to notice that this value is very close to the ground-state
energy of a neutral donor, −2.0 au.

Table 3. Eigenenergies of the first excited state (1S2) of a two-dimensional D− centre calculated
with the correlation factor χ = exp[−2(r1 + r2)].

NGLP

NHH (λm) 26 30 32 34 36 38

16(12) −1.9769251 −1.9764876 −1.9764208 −1.9763914 −1.9763791 −1.9763740

25(16) −1.9896599 −1.9888930 −1.9886679 −1.9885271 −1.9884447 −1.9883989

36(20) −1.9943256 −1.9943743 −1.9942480 −1.9940975 −1.9939578 −1.9938450

49(24) −1.9950413 −1.9959417 −1.9961986 −1.9963505 −1.9964189 −1.9964273

64(28) −1.9951115 −1.9961790 −1.9965752 −1.9968959 −1.9971491 −1.9973418

To summarize, in this paper we have shown that the inclusion of a simple correlation
factor of equation (4) hastens the convergence of the hyperspherical expansion to some extent
depending on the a-value chosen. With a = √|E|, the correlation factor correctly represents
the asymptotic behaviour of the full ground-state wavefunction as ρ → ∞, such that the
convergence of the radial expansion is rapid, but fails to capture the full features of the
wavefunction near the coalescence points (i.e., ri = 0, i = 1, 2); many hyperspherical
harmonics are still required to obtain an accurate ground-state energy. With a = 2, the
correlation factor captures the full features of the wavefunction near the coalescence points,
but decays too fast as ρ → ∞; many Laguerre polynomials are required to compensate for
this. Since the inclusion of hyperspherical harmonics associated with higher-λ quanta makes
computation more difficult, taking a = 2 is computationally more favourable. It is possible that
the hyperspherical and radial expansions can both be accelerated by using a more sophisticated
correlation factor. But the evaluation of matrix elements must then become more complicated.

Finally we would like to point out the difficulty of generalizing the present method to a
three-body system with finite masses (e.g., charged excitons). The transformed Hamiltonian
H ′ will have some additional three-body terms which cannot be calculated analytically. The
evaluation of the numerous matrix elements of the Hamiltonian then becomes computationally
difficult.
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